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New integrable quantum chains combining different 
kinds of spins 
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t Laboratoire de Physique ThCarique et Hautes Energies$, Tour 16, ler Ctage, 
UniversitC Pans  VI, 4 place Jussieu. 75252 Paris Cedex OS, France 
$Central Research Institue for Physics, H-1525 Budapest 114, FQB 49, Hungary 

Received 5 January 1992 

Abstract. A general procedure to generate new integrable Hamiltonians combining any 
kind of spins distributed arbitrarily on the line is given. As a concrete application, 
anisotropic chains formed by spin.; and spin-1 operators at alternating sites are presented 
and solved exactly by Bethe an~atz (EA). We compute the ground-state and excitation 
energies and momentum. The higher-order BA equations are derived. Depending on our 
choice, these new Hamiltonians exhibit or not conformal invariance in their IOW energy 
spectrum. 

1. Introduction 

Integrable magnetic chains are interesting physical systems with a rich mathematical 
structure. The best-known by far is the XXZ Heisenberg chain with S = f  spins [l]. 
Integrable spin-1 [Z] and higher spin [3] chains have been found and solved. In addition 
magnetic Hamiltonians can be derived from Yang-Baxter (YB) solutions associated 
with Lie algebras other than SU(2) [4,5]. 

The purpose of this paper is to present and solve integrable magnetic chains formed 
by two kind of spins or more. The simplest case is an alternating chain with spin-f 
and spin-1 operators. The Hamiltonians are derived from appropriately chosen sol- 
utions of the YB equation. 

We find and solve two integrable Hamiltonians describing spin-f and spin-1 
operators at alternative sites. We call them R ( a )  and f i ( a ) .  H ( a )  is given explicitly 
by equations (3.10)-(3.13). They contain a piece coupling pairs of neighbouringspin-f 
and 1 operators and another piece coupling three neighbouring spins. For H two 
spins-; and one spin-1 and for H two spins-1 and one spin-;. These Hamiltonians are 
invariant under rotations around the z-axis and depend on two arbitrary continuous 
parameters a and y . y is connected with the SU(2), parameter by q = e" or Cy. 
Depending on the choice of y and a we find ferromagnetic or antiferromagnetic 
behaviours. This leads to a gapless regime (in the weak antiferromagnetic case) or a 
non-zero gap regime (in the ferromagnetic or strong antiferromagnetic cases). Notice 
that the gap vanishes or not irrespective of the kind of spins contained in the Hamil- 
tonian. 
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More general integrable magnetic Hamiltonians can be easily defined. Possible 

( a )  To consider several kinds of spins s,, s2 , .  . . . 
(b) Spins of different kind may be distributed arbitrarily on the line. That is, the 

spin values do not need to  alternate from site to site. Any distribution leads to an 
integrable chain. 

( c )  Include operators linked to Lie algebras other than A , .  That is, Hamiltonian- 
based on Yang-Baxrer soiurions associated to a Lie aigebra Y# A, ana acting on two 
different representation spaces. 

In section 4 we solve exactly the spin-$-spin-1 mixed Hamiltonian H ( a )  and f i ( a )  
by Bethe ansatz. We obtain their ground-state energies and the elementary excitation 
spectrum in section 5 .  The ground state is formed by a distribution of real roots and 
a distribution of (complex) 2-strings. Holes on the real root distribution describe 

is true for holes in the 2-string distribution. 
We give the combination of the the two Hamiltonians in which both kinds of 

excitations have the same dispersion law and hence the system is conformally invariant. 
We conclude by checking the string hypothesis for the complex roots in these new 
models and we derive the higher-level Bethe ansatz equations. 

generalizations are: 

___:A. --- ___^ L- --A --_- ̂-^ I-- r i p - \  -- --- 
c?.c;LaLLuLL. W l U l  IIUII-LGLU c"rrgy ,U' m { u ,  rUlU 'C'U GIIcIgy 1"1 n\u,.  111= LUII"GI>C- 

2. Integrable quantum chains with two types of spius 

As is known, regular solutions of the Yang-Baxter equations systematically yield 
integrable spin chains [2-61. Let us briefly review how a spin Hamiltonian follows 
from an R-matrix q f ( e j ,  which is a soiution of the Yam-Baxter equation ( Y m j  

[ 10R(O - O')][R(e)@ll[ l@R(B')I= [R(e')@l][ 1 0 R (  S)l[R( 0 - e' )@ 11. (2.1) 

We consider 2N sites in a row and we associate to it the operator 

[ T ( e ) ,  T(e')]=o. (2.6) 
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In most cases 

R(0) = cl 

and then (2.1) implies that [4] 

R(O)R(-O)=p(O)l 

where p ( O ) = p ( - O )  is a c-number function. Equation (2.7) implies that the transfer 
matrix (2.5) at 0 = 0 equals the unit shift operator 

and we used 

@ = ( P I , .  . . , P Z N )  and P 2 N + I  = P I  
(2.10) 

As a consequence of (2.9) the logarithmic derivative of T( 0) at O = 0 gives an operator 
coupling pairs of nearest neighbours. One finds [4] 

5 . . , a 2 N )  

[ t d o ) i ~ 6  = C8a68py.  

(2.11) 

where 

Clearly, the operator (2.11) can be interpreted as a one-dimensional quantum Hamil- 
tonian. It couples neighbouring spins. For the six-vertex (eight-vertex) R-matrix one 
obtains through equations (2.11)-(2.12) the XXZ ( X Y Z )  Hamiltonian. 

Equation (2.1) is not the most general YBE. In general we may have YB operators 
acting on pairs of unequal vector spaces. This corresponds graphically to lines of 
different kind. 

That is, we have the operators 

Here 1 sa, p 'q ,  (lines ~ ) and 1 s a ,  b s  q2 (lines -). rmo(8)  also fulfils 
( 2 . 4 ~ ) .  In addition, (2.1) holds for the R-matrix 

(2.14) 
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(2.15) 

E(e - e')[ ?(e)@ i( e')] = [i( e?@ i(e)iR(e - e?. 
In addition, we assume T-invariance (symmetry) for the R-matrices and &operators 

(2.16) 

(2.17) 

Further YB operators f a o ( 8 ) ,  F m O ( S )  and commuting transfer matrices ;(e) and ?(e) 
are constructed as follows 

(2.18) 

i j )  generates local quantum Hamiltonians coupling nearest neighbours as 7 j )  does 
( IO), (2.11)). This is not the case for +(e), since 

i e b ( o ) l ~ O  

just cannot produce deltas as [ fa@( does in (2.10). An operator connecting different 
spaces (- and ---) cannot be a unit operator. 

In conclusion ;( 0) generates operators coupling all spins in the chain. However, 
+,p(fl) is not the most general operator obeying the YBE (2.4b) that we can build in 
the present context. Let us consider 

(2.19) 

Notice that - lines and __ lines sit at odd and even sites, respectively. 



Integrable quantum chains combining different kinds of spine 4503 

This operator fulfils also (2.46) for fixed LI 

R(e-e i ) [Pt ) (e ,  a ) ~ P " ( e ~ ,  a ) ~ = [ - i ' ~ ~ ' ) ( e , ,  L I ) @ W ) ( e ,  a ) ] R ( e - e ' ) .  (2.20) 

Of course, much more general operators fulfilling the YBE can be constructed (See 
discussion at the end of this section and at the end of section 3). 

A commuting family of transfer matrices 

;(alt)(e, a) =E F ) a a ( e ,  a) (2.21) 
L1 

. .  . .  
fulfil the usual equation 

[ P ) ( e ,  a), i(alt)(e', E ) ]  =o. 
Let us now investigate the properties of ;$?), First, for 0 = 0 we find 

(2.22) 

1 2  3 ZN-2 2N-1 
2" 

;(alt)(o, a)= c N [  . . . . . . . . >c] . (2.23) 

1 2 3  I 2N-1 2N 

This is not a shift operator like (2.9), but rather looks like a light-cone transfer matrix 
[9]. The inverse operator [;'""'(e)]-' is given by 

1 2 3 I ZN-1 2N 

(2.24) 

where we have used equation (2.17). We are now in a position to compute the 
logarithmic derivative of 0 )  at 8 = 0. We find 

(2.25) 
- - a  

ae Nl,)H =-log = fi(-J I f 2 +  If,) 

where 
ZN 

&i(O)=H,= $ +2x + . . . + 2 N . F - 1  (2.26) 

2N 1 ZN-2 2N-1 

2N 1 2 2 3  4 2N-2 ZN-1 2N 

c i (O)H,  = # + # + .... + ~ (2.27) 

-0. - m  -0. 

2N 1 2 2 3  I 2Ec2 2N-1 2N 

and I?(=) is a normalization that we shall choose later to our convenience. Here 
0 R 
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and 
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(2.28) 

In H2 ( H J  we collected the terms originated when d/d0 actedon an operator P2'"'(0) x 
(t'2x'(0)). H2 contains nearest neighbour interactions (two sites) whereas in H ,  there 
are next-to-nearest neighbour couplings. The three-site couplings come from the 
f'""'(0) which does not decouple as the f ( 2 X ' ( B ) I , = ,  does (equation (2.10).) 

Let us write H2 and HI in analytic form 

Here 2 N + 1 - 1 , 2 N + 2 - 2  

(2.31) - - 

T b  6 

In conclusion, we have just constructed a one-parameter family 

I ? ( ~ ) = H , ( o ) + H , ( ~ )  (2.32) 

of integrable Hamiltonians from a YB solution. Besides a, this Hamiltonian may depend 
on one ( y )  or two ( y  and k) continuous parameters. The latter case corresponds to 
elliptic YB solutions. 

We say that (2.32) is an integrable Hamiltonian, because it commutes with the 
one-parameter family of transfer matrices P t l ( e ,  a): 

[ H 2 ( a ) + H l ( a ) ,  i'""'(e, a)] = O  v e. (2.33) 

Let us now introduce the momentum operator appropriate for the alternating 
configuration (2.19). In the usual case (2.2) the transfer matrix at O = O  gives the 
one-step shift operator (2.9) and the momentum is just its logarithm. In our alternating 
case (2.19) the basic object will be a two-step shift operator since a one-step shift 
would exchange the nature of the sites. We can relate this two-step shift with transfer 
matrices as follows. Let us consider the transfer matrix ?""( 8, a). It follows from 
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i'a"'(B, a) (equation (2.21)) by exchanging the lines __ and -. That is, 

+It)( e, a) = 

Using (2.17) we find after a little graphical calculation 

Therefore, we define the momentum as 
~ l n lp t ;  (0, -a)?(~:"~, 

(2.34) 

( i 3 j  

The family Pt!(e, p )  generates also a commuting family 

Pt) (e ,p ) ,  s'al'l(e',p)l=o (2.36) 

when p =-a this family commutes with the ~ ' " " ' ( 0 ,  a) 

-a), {!%!!!(@!, .)j=O, (237) 

This is a consequence of the YE equation 

[ i, ( e  - er+  a )iCa7:;)( e, a) ITY( e', --(I) 
= Tz1')(e,, -a) F$l(e, a)[ iaP(e - e'+ alldb (2.38) 

=(alO/o -., --~--.--" ^^__.. *:-" L-tl. ... :*¶. r l . w l o  - \  "..A ir TI.- fir..* ,."e -r \Y ,  U, gc;,rrrarca uyc1aL"'J C"L"'L1"LL"~ UVLll w11.1 1 \",U, all" 1'. l l l C  l l l D L  Y l l C  

(2.39) 

(with N ( = )  being an appropriate normalization constant) contains two and three-site 
couplings just as fi (equations (2.26) and (2.27)] but with the lines - and - 
exchcnged. 

a 
ae R = ~ ( a ) - l n ~ ' " " ' ( e , - a ) l  8=u 

3. A spin--&spin-l anisotropic integrable Hamiltonian 

We apply in this section the general framework presented in section 2 to the specific 
case of the six-vertex model and the YE solution obtained by fusing it. That is, we take 

[f,p(e)ira = s:",ej 

with 

: \ I  0 
sinh 8 sinh y 
sinh y sin11 v 

n " I 
s(e) = :-L n 

0 0 sinh(O+y) 

(3.1) 
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a, b=O,  * l ,  with [2] 

H J de Vega and F Woynarouich 

&e) = 

and 

A(O)=sinh(O+$y) B,(B)=sinh(B*$ C(O)=sinh 

This is a regular YB solution. Equations (2.8) and (2.17) hold with 

p ( 0 )  =f(cosh 2 y -cosh 20) ;(e) =:(cosh 3 y -cosh 20). 

', , 
(3.2) 

(3.3) 

(3.4) 

Inserting (3.1)-(3.3) in (2.30), (2.31) yields the matrix elements of our integrable 
Hamiltonian. We choose for simplicity 

*(a)=sinh y(cosh2n-cosh3y). (3.5) 

The Hamiltonian thereby obtained is invariant under rotations around the z axis and 
also under reflections on the xy plane. Due to these symmetries 

and 

(3.6) 

(3.7) 

In addition the Hamiltonian k(a) is a symmetric matrix. 
We find for the non-vanishing matrix elements of H 3 ( a ) :  

112 I 1 / 2  - hIl2 I 
1/21-1/2- h 1 / 2 u 1 / 2 -  h ~ l ~ 2 1 - l 1 2 -  1 /2~~12-cosh  yh!'$t.$:=cnsh y(cosh2a -cosh y )  

h 1 1 1 2 i i i z -  112o-112- 

- cosh y(cosh 2a -cosh 3 y )  

1 / 2 1  112- h'/20-1/2--sinh22Y 

h;';!! ;:$= -sinh y sinh 2y 

h!$: 
(3.8) 

= -sinh 2 y-sinh(a + y/2) 
1 /2Ul12  h::;;yL/:12=2 sinh y m s i n h ( a  - 3 y / 2 )  = h 112 1-112 

h?;:;!/:12=- sinh(a - y / 2 ) m s i n h  2 y  
h-112 I 112 - hlI2 1 -1/2 

i 1 2 i - i p -  -1121 1 i z -~osh (2a+2~) -cosh  Y. 
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For H 2 ( a )  we find after neglecting a trivial term proportional to the identity operator 

hl/2 ,/2,- 1 - - s inhy(2cosh2y+l)  . h;/!,2d1=-2sinh y m c o s h ( a + y / 2 )  
(3.9) 

h:1,2.1 1/2 I - - -h'/20- ,/20-sinh ' y. 

These operators can be conveniently written in  terms of spin-; and spin-1 operators. 
We find for the three-site operator H,(a)  

h ~ n , 2 n + i , 2 n + 2 ( 0 )  

=f(cosh2a-cosh y)u+sinh y s i n h ( 2 a + y ) ~ ( S , ) ' ) ~ + s i n h 2 y ~  

Y U'-sinh a cosh- U-cosh a 
[sinh(a -3y/2) 

cosh y) 2 

cosh y 
-5sinh y sinh2yWf- (cosh 3y+cosh 2 a  -2 cosh y) 

L 

sinh2 2y 
x (Uz 0 1 0  uz) - 2 [Uz 0 S.0 1 + 10 s:o 11 

(3.11) 

ua and U; are Pauli matrices acting on sites 2n and 2n  + ~, respectivt , . The spin-1 
operators 

SI=- '(" 1 0 O )  1 -p -!) Sz=(:  : :) (3.12) 

act on site 2n + 1. 

2 o  1 0  0 0 -1  

We find for the two-site part H,(rr) 

(3.13) 

We have considered up to now the non-zero gap regime where both the YB solutions 
i(O), f(0) and the Hamiltonian H ( a )  are hyperbolic functions of 0, y and a. By 
changing a + ia, y + i U, 0 +io, we obtain the gapless regime. 

The Hamiltonian H ( a )  (equations (3.10)-(3.13)) is the simplest one combining 
two types of spin, It is straightforward to generalize it. For example, using R ( 8 )  and 
?(e), where R ( 0 )  (see (2.14)) is the spin-1 anisotropic R-matrix [2], we would get in 
this way a Hamiltonian H ( a )  coupling !WO spins-1 with one spin-; instead of two 
spins-! and one spin-1 as is the case for H ( n ) .  More generally one can take any type 
of higher spin and dispose them in any definite order. That is, we can consider as a 

h2n.2n+l(a) = -2 i cosh2 vu,S,+-cosh( a+$U+sinh2 Y(S,)~ 1. 
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generalized alternating YB operator 
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1 2 3 i  

21-1 21 2N 

Here the full line stands for a spin S multiplet ( - S s  a, p G +S) and the vertical line 
at site (21 - 1 )  corresponds to a spin SI multiplet (-SI G a,, pI 

To be general, we consider a site-dependent parameter a,. We have then a class 
of integrable Hamiltonians that follows from the transfer matrix 

+SI). 

d 8 ' " ' ( e ,  a) = r,,(e, a) (3.14) 
LI=-s 

as 

(3.15) 

These Hamiltonians have a structure similar to (2.26), (2.27). That is, the H3 part 
couples the spin SI at site ( 2 1 - 1 )  with its neighbouring spins S at sites 21-2 and 21. 
The Hz provides a coupling between SI (at 2J-1) and S at site 21-2. The explicit 
matrix elements of this general class of Hamiltonians can be obtained through a 
straightforward and long calculation from the YB solutions obtained by fusion in [3,6].  

We have considered here generically anisotropic Hamiltonians. As is clear, their 
isotropic limits, as 

3 
H ( g ) =  N ( g )  -In ~'""'(8, g)(8=o.  as 

- 1 
1-0  y 

H c 3 0 - l i m ~ [ H 2 ( a  = y a ) + H , ( a = y a ) ]  

are also integrable. 

4. Bethe ansatz solution of the models with different types of spins 

In this section we solve the spin-f-spin-1 models introduced in section 3 (equations 
(2.29j-(Lji) and (2.39jj. We shaii caii N B I 2  ana N, the numbers of sites occupied by 
spin-f and spin-1 atoms, respectively. In (2.19)-since these sites are alternating- 
N,,2 = N ,  = N,. 

In order to find the eigenvectors and eigenvalues of k ( a ) ,  we construct those of 
GcaIt)(O, a) by algebraic Bethe ansatz. This can be done in analogy to the construction 
in [ a ]  for pure (non-alternating) spin S models. We find for the eigenvalues of the 
-i ( W " * - U ,  111 ,,IC nrgu'Lu1L'CLL'C rc;g'L"r; 

~(e,a)=iZ+(e,u)+~_(s,o) (4.1) 

Zlsl t ) ,n . , :- AL. ._..._.I_.. :- 

sinh(Aj +iy/2 - i.9) 
sinh(Aj-iy/2-iO) A+( 8, a ) = [sin( y + 6 ) ]  Nli2[sin(3 y / 2  + a + e ) ]  N l  n . (4.2) 
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The Aj (1 c j =s r )  are solutions of the Bethe ansatz equations 

sinh(A,+i(y+a)) N l  ' sinh(Aj-Ak+iy) 
sinh(Aj -i(y - a)) ~ r = i  sinh(Aj - A x  -iy)'  ] = n .  

(4.3) 

(4.4) 

These equations reduce to the well known pure spin-f and spin-l equations when 
NI = 0, NI/>= N and NI/> = 0, N, = N, respectively (in this latter case a can be 
transformed out of (4.4)). According to (2.25) 

- a  - 
l?(a) = N,- In A(6, a)lela 

a6 
(4.5) 

where the choice of f i a  corresponding to (3.5) is 

fia =(cosh 2a  -cosh 3y) sinh y. 

This, through (4.1)-(4.3) yields 

Here we have used the notation 

sinh(A + i a )  
sinh(A - i a )  

+ ( A ,  a) = i  In 

and +' is the derivative of + with respect to A. 

After a derivation analogus to that of (4.2) we find for the eigenvalue ?'a't)( 6, -a) 
The momentum of a solution of (4.4) can be calculated using the definition (2.35). 

' sinh(Aj-i6+iy) 
sinh(A,-iB-iy) A+,(O, a) = [sin(O+ y )  sin( 6+2y)lNL[sin( 6-a - y/2)]NL/', , (4.10) 

where the A, satisfy the Bethe ansatz equations (4.4). Since A. and A-, , as well as 
their 6-derivatives are zero at 6 = 0, only A, is relevant, and (2.35) yields 

P =  1 [+ (A, ,  y /2 )++(A i9  Y)]. (4.13) 

Here we have subtracted a constant in order to make the momentum of the ferromagnetic 
vacuum (all spins up to r = 0) vanishing. 

Before solving the (4.4) Bethe ansatz equations, let us give the eigenvalues of the 
Hamiltonian A(a). Due to (2.39) and (4.9). (4.10) 

I = ,  

- a  - - a  
a6 a6 E ( a ) =  "-In A(6, a)ls=o= N . - h  A+,(& a)ls=o (4.14) 
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1 l?=Na N,,,(cot y + c o t 2 y ) + N ,  cot(a+y/2)-  z +'(A,, y)  (4.15) [ j - I  

with Na being a normalization factor. 
Notice, that the eigenvectors of H ( a )  are the same as those of k(n). This is because 

[&a), R(a)]=O (4.16) 

which is a consequence of (2.37). 

5. Solution of the Bethe ansatz equations 

In the following we give the solution of the (4.4) Bethe ansatz equations. For the sake 
of simplicity we deal with the a = O  case only, and we suppose that y <  m/4. 

The ground state is formed by real roots qm (like the ground state of a spin-; chain) 
and pairs of complex conjugate roots with real parts &. In the N + m limit these latter 
roots become 2-strings 

L *iy/2 (5.1) 

(like the roots in the case of the spin-I chain). Substituting Ai = 7- and Ai = 5, +iy/2,  
and taking the logarithm we obtain 

N I / ~ + ( v ~ ,  y/2)+N,+(7m3 Y )  

= ~ ~ J , + X + ( ~ , - ~ P . Y )  
P 

+ ~ ( + ( 7 = - - 5 ~ ,  ~ / 2 ) + + ( 1 1 . - t ~ ~ 3 ~ / 2 ) )  
B 

(5.3) 

Here I ,  and I.  E Z + f ,  + is given by  (4.8), and we have used the properties 

+ ( A  -iy/2, Y)++(A+iy/Z, Y )  = +(A, y/2)++(A\, 3 y P )  

+ ( A - i ~ / 2 ,  v/Z)++(A+iy/Z, y/2)=+(A, y)(mod2n).  
(5.4) 

If we choose the cut of the In function in (4.8) so, that + is continuous for real A, in 
the ground-state the J, and the I ,  form monotonous sequences 

.I,+, - J ,  = 1 

I,,,  - I ,  = 1. ( 5 . 5 )  

The numbers of qa and &, are N,/,/2 and N,/Z, respectively. In the thermodynamic 
limit the spacing between the neighbouring 7s and 5s tends to zero as N-'. We define 
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the root-densities as 

The equations determining these quantities can be obtained from (5.2) and (5.3) by 
standard methods: 

Excitations can be introduced by leaving holes in the 7 and .$ distributions and 
introducing complex As not forming 2-strings. The construction of such solutions of 
(4.4) closely parallels the analysis of the Bethe ansatz equations of the pure spin-f 
model [SI. Here we give the main point only. The holes can be introduced by leaving 
holes in the J, and I= sequences 

(5.10) 

where am,-, is the Kronecker-symbol. In this case the root-densities p l p  and pI can be 
defined as 

Here 6(x) is the Dirac &function, and the us are continuous functions giving the 
densities of the roots and holes. Keeping the positions of the holes and the complex 



(5.13) 

(5.14) 

Here the A. are the complex rapidities and they are determined by the equations 

N I / ~ + ( L ,  Y / Z ) + N I ~ ( L ,  Y) 

=2nJn +Z: + ( A n  - A n , )  + NI/> dq + ( A n  -7, Y ) ~ T ~ / Z ( V )  
"' I 

-I '$(An-Th, Y / z )  
h 

+NI I ( + ( A n - &  Y / ~ ) + + ( A .  - 6 , 3 ~ / 2 ) ) d t )  d5  

-1 (+(A. - 5 h ,  Y / 2 ) +  + ( A n  - e h ,  3 Y m .  (5.15) 

The equations (5.13) and (5.14) can be solved, and then ul12 and U,  can be eliminated 
from (5.15). This way we arrive at a system of equations which contains qh, th and 
An only. The analytic properties of the equations in (5.15) are different depending on 
if A. is a 'very close' ( lImAn[<y/2) ,  a 'close' (y/2<IImAnl<y),  a 'wide' ( y <  
IIm Ant <3y/2)  or a 'very wide' (3y/2 < IIm Ant( < n/2) )  root. Actually it turns out, 
that (5.15) can he satisfied only if the very close, close and wide roots come in trios 
so that the members of such a trio have common real parts, and the spacings in the 
imaginary direction are iy:  

A. =x. A; = x. *iy IImxnI<y/2. (5.16) 

h 
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(These are generalized 3-strings.) There are no such restrictions on the very wide roots 
which we write in the form 

=x. + i  sgn(Imx.)y IIm x.1' YD. (5.17) 

The equations for the positions of the holes can be reconstructed from the us. Finally 
the densities, together with the higher level Bethe ansatz equations (which give the 
positions of the holes and x.) can be given: 

= 2mIh -1 2 tan-'( tanh * ( C h  - q h )  
h' 2Y 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

and 

with 

(5.23) 

It is interesting, that in the equations of qh the other qh. and ,y. do not appear, and 
that the x. are directly related to the Ch only. It is interesting to note also, that for an 
s' = 0 state (the total number of A, is N,/,/2+ N I )  the number of x. is half the number 
of Ch.  (If S'#O,  the relation between the numbers of the vh,  Ch and un is more 
complicated, and also terms decaying as N + m  appear in (5.20)-(5.22).) 

In the following we discuss the energy of the solutions. First consider the fi. If the 
Hamiltonian is I?, the energy is given by (4.7). Substituting Aj = q,, forthe real rapidities, 
6. *iy for the 2-strings. and (5.16) together with (5.17) for the trios and the very wide 
roots, finally evaluating the sums over the 7.. and f m  using the root-densities obtained 
from (5.18) and (5.19) we arrive at 

g=fi( N1/2E1/2+NlEl+1 61/2(?h) (5.24) 
h 

where 

dk 
s inh(k(r-y))  

COSh(Ky) sinh(mr) 
2,/,=cot y-2 (5.25) 
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dk 
3y jm sinh(k(v-2y)) 
2 cosh(ky) sinh(k?r) 

2, = cot --2 (5.26) 

and 

It is remarkable that neighter the & nor the ,yn contribute to the energy. 
The momentum can be calculated according to (4.13). A straightforward calculation 

using the distributions of the real roots and 2-strings and the form of the other complex 
roots gives (for S' = 0 )  

Here we have used that NIl2 = NI = N even. If we denote 

pr")  = 2 tan-' exp - ( 71ynh) 

(5.28) 

(5.29) 

we can write 

We should note, that these states are macroscopically degenerated (in energy but not 
in momentum), as the pili  do not contribute to the energy. 

Calculating the energy according to I? (4.15) yields 

with 

dk 
sinh(k(m-2y)) 

cosh(ky) sinh(k?r) 
El/2  = cot y+cot 2y-2 

dk  
E - _  Y "sinh(k(lr-2y)) ,- cot--4 

2 lo sinh(k?r) 

and 

(5.32) 

(5.33) 

(5.34) 

Here the holes in the real 7 distribution and the non-2-string complex roots possess 
zero energy. Using (5.29) the excitation energies have the form 

E -  E ~ =  N E  z s i n g r ' .  (5.35) 
h Y  

In the above calculations we have seen, that both if fi or fl is the Hamiltonian, 
the holes in real rapidity distribution (7-holes), and the holes in the 2-string distribution 
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(&holes) are the elementary excitations. These excitations behave, however, differently: 
while both carry momentum in both cases, only one of them possesses non-zero energy. 
Considering a system which is described by a linear combination of fi and H, we can 
extrapolate between the two limiting cases. The coefficients also can be chosen so that 
the dispersion is 

(5.36) 

This system is conformally invariant, and the corresponding Hamiltonian can be derived 
from the 7-matrix 

7'"1t'(o) = p I t ) ( ~ ) p ) ( ~ ) :  (5.37) 

Finally we want to prove that the string-hypothesis (5.1) used to solve the Bethe 
ansatz equations holds. This we do so that we show the corrections to (5.1) are 
exponentially small. Setting 

A j  = +i(y/2+ 6,) (5.38) 
we find 

(5.39) 

Here we assume Scc 1, 0(1) means terms of the order unity, and we use the notation 

Ip1&)=-+(5+iy/2. r /2 )+1  d v ~ ~ / ~ ( v ) + ( t + i y / 2 - v ,  Y )  (5.40) 

and 

~ ~ ( 5 )  =-+(5+iv/2,  Y ) + (  dt 'pd5')  

x [+ ( t+ iy /2 -  C, Y / z ) +  +(5+iy/2 - t', 3 ~ / 2 ) 1 .  (5.41) 

It is clear that for low excited states pIl2 and p,  can be replaced by the ground-state 
distributions pYl2 and py. Evaluating the integrals we find 

sin161 NI,* 

- = I tanh 21 
sin(2y) 

i.e. 6 is indeed exponentially small in N. 

(5.42) 

(5.43) 
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